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The two-ancleon density distributions in states with isospin T = 0, spin S=1 and projection
Ms=0 and %1 are studied in *H, >*He, *7Li and 0. The equidensity surfaces for Ms=D distri-
butions are found to be torcidal in shape, while those of Ms=+1 have dumbbell shapes at large
density. The dumbbell shapes are generated by rotating tori. The torcidal shapes indicate that the
tensor correlations have near maximal strength at r < 2 fm in all these nuclei, They provide new
insights and simple explanations of the structure and electromagnetic form factors of the deuteron,
the quasi-deateron model, and the dp, dd and ad L=2 (D-wave) components in *He, *He and *Li.
The toroidal distribution has a maximum-density dismeter of ~1 fm and a half-maximom density
thicknesa of ~0.9 fm. Many realistic models of nuclear forces predict these values, which are sup-
ported by the observed electromagnetic form factorn of the deuteron, and also predicted by classical
Skyrme effective Lagrangians, related 1o QCD in the limit of infinite colors. Due to the rather small
size of this structure, it could have a revealing relation 1o certain aspects of QCD. Experiments
1o probe this etructure and its effects in nuclei are suggested. Pair distribution functions in other
T, 5 channels are also discusaed; those in T,.5 = 1,1 have anisotropies expected from one-pion ex-
change interactions. ‘The tensor correlations in T, $ = 0, 1 states are found to deplete the number of
T.5 = 1,0 pairs in nuclei and cause a reduction in nuclear binding encrgies via many-body effects.

L INTRODUCTION

Nuclear structure has been discussed mostly in the context of the liquid drop and shell models. These models
have been extremely useful in explaining many observed nuclear properties. However, they are based on macroscopic
concepts, and do not address the simplest nuclei, hydrogen and helium. Furthermore, recent (e, ¢'p) experiments m
have indicated that in heavier near-closed-ahell nuclei, less thar 70% of the nucleons are in the wingle-particle orbitals
that would be fully occupied in the simple shell model.

To obtain a more microscopic deacription of puclear structure, we may regard the nucleus as a collection of interacting
nucleons described by the Hamiltonian [2}
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The interactions v;; and Vi;i are not exactly known, but vy is well constrained by the available scattering data, and
binding energies and theoretical considerations place important constraints on Viix. The structare of the ground-state
wave function Wo at small interparticle distances is influenced by the repulsive core and tensor parta of v;;. Most
realistic models of u,; contain these components and, for example, the Reid [3], Paris [4), Urbana [5) and new Argonne
v1g 6] models seem to predict similar structures. The three-nucleon interaction Vijx is much weaker than the ;.
Due to a large cancellation between kinetic and two-body interaction enetgiea, it has a significant effect on nuclear
binding energies [2] but its effect on the stracture of ¥p is much less than that of the better known Vi



Due to the strong apin-iscepin dependence of vi; and Vi, it is difficult to solve the Schrodinger equation with the
Hamiltonian (1.1). Only recently it has been possible to obtain accurate solutions for A < 7 nuclei [7,8] with the
Green’s Function Monte Carlo (GFMC) method. Accurate variational wave functions ¥,, which contain less than
0.5% admixture of excited states are known for A = 3 and 4 nuclei [9]. The available ¥, for *Li [10] and ‘50 11,12}
are certainly not as accurate 8a thoss for A = 3 and 4, nevertheless they presumably contain most of the important
structure of the ¥y.

In this paper we examine the short-range structure of “H, ¥*He, ®’Li and %0 by calculating the two-nucleon
deneity distributions in states with isoepin T, spin 5, and spin projection M. Since the deuteron has only two
nucleona, its one- and two-body density distributions are trivially related. Variational wave functions ¥, and Monte
Carlo methods are used for 4 > 2.

The two-nucleon distributions in the T, § = 0, 1 statea have a strong dependence on the spin projection Mg. The
equidensity surfaces, spanning the top three quarters of the density range in Mg=0 states, have toroidai shape. These
tori are produced by the joint action of the repulsive core and tensor interactions. In contrast the equidensity shapes
in the Ms=+1 have dumbbell shapes, which have been studied eatliet in the deuteron [13,14]. A brief description of
the two-nucleon interaction in T, = 0,1 states is given in section II, and the density distribution of the deuteron
is discussed in detsil in section III, where we show that the dumbbell-shaped distributions in Ms=+1 states are
produced by rotating tori. Commonly used models of v;; predict that the maximum density torus has a diameter of
~1 fm, and the half-maximum density torus has a thickness of ~0.9 fm. In section III we relate these dimensions
of the torcidal distribution to the obeetved electromagnetic form factors of the deuteron. The structures are Tather
dense; current models predict the maximum one-body density of the torus inside the deuteron to be ~ 0.34 + 0.02
fm—?, i.e., approximately twice nuclear matter density.

The two-nucleon T, 8 = 0,1, Ms = 0, 1 density distributions in >*He, *7Li and '*( are compared with those of
the deuteron in section IV. The distributions for r < 2 fm differ only by a single scale factor. They indicate that in
the T = 0 state, the tensor correlations have near maximal strength for r < 2 fm in all these nuclei. The scale factor
ia identified as the Levinger-Bethe quasi-deuteron number, and its value is compared to the ratios of total photon (E,
= 80 to 120 MeV) and pion (E,+ ~115 MeV) absorption ¢ross sections.

In order to study the nature of many-body structures induced by these compact two-body structures we atudy the
dp, dd and od overlaps with the ¥, of He, *He and ®Li in section V. These depend strongly on the spin projection
M; of the deuteron and indicate the presence of anisotropic structures in all these nuclei. Experiments to probe these
structures are suggested. .

Pair distribution functions in other T, $, Mg states are discussed in section VI, Those in T8 = 1,1, Mg =0, %1
atates are snisotropic as expected from the pion-exchange tensor force. We also find that the number of T, 5 = 1,0
pairs in a nucleus is reduced due to many-body effects involving the strong T, 5 = 0,1 tensor correlations. This
reduction gives a significant contribution to the saturation of nutlear binding energies.

The Skyrme field theory {15], related to QCD in the limit of large number of colom ¥, — o, has predicted
toroidal shapes for the deuteron [16-18] in the classical limit. Density distributions of the grouad states with 3 to 6
baryons have also been calculated [19] in this limit. In the last section, VII, we summarize our results, obtained with
conventional nuclear many-body theory, and indicate their relation to those of the Skyrme field theory in the classical
limit, and of the constituent quark model.

II. THE TWO-NUCLEON INTERACTION IN THE T,5 =1,1 STATE

Nuclear forcea are not yet quantitatively understood from QCD. However, many realistic modela have been con-
structed by fitting the avaitable two-nucleon acattering data. The shape of the short-range sicuctures in the T, 5§ = 0,1
state appears to be relatively model-independent. The interaction vy in the T, S = 0, 1 state in Rejd, Urbana and
Argonne models can be expressed as

w1 = v5a(r) + ] (F)S + i (r)L - 8 +offy (PE% + vB(r)(E - 8)7, (2.1)

while a V2 operator is used instead of L7 in the Paris potential. The structures are formed mostly by the static part
of the interaction:

o1 = e a(r) + 61 (N)S;5. (2.2)

It is instructive Lo study the expectation values of v§*¥ in eigenstates of the position operator r with spin projections
Mg=0 and Ms=+t1. These depend upon r and &, the polar angle of r with respect to the spin-quantization axis
and are given by

{Ms=0{u3!"(r)|Ms=0} = v, {r) ~ 40} ,(r)Pa{cosd), (2.3)
(Ms= £ 1vi!{*(r)IMs= £ 1) = v§ , (r)} + 2v§ 1 (r)P3(cos 8). (2.4)

The AM5=0 expectation value of v§']" has the largest variation with # as illusteated in Fig. 1. The static potential has
a repulsive core; outside the cors it is very attractive for §==/2 and repulsive for #=0 and x. Therefore, in this state
the np pairs form a torcidal density distribution in the zy plane. The potential in the Mg==1 states is atiractive
for #=0 and x, and equal to that for Ms=0, f=x/2, while it is repulsive for f==/2 and half way between the Ms=0,
#=0 and x/2 potentials. Thus the Ms=x%1 potential has two distinet minima separated by a barrier, and therefore
the density distributions have a dumbbell shape in this state.

At r >1.5 fm, the of'?! is dominated by the one-pion-exchange potential, while at smaller r it has a significant
model dependence. Much of this model dependence is cancelled by the differences in the momentum-dependent terme
in the models. In particular, the deuteron wave functions calculated from these potentials have much smaller model
dependence. These are commonly written as

U3 (x) = Ro{r) Voii(7) + Rale) V2I1(5), {2.5)

where Ro{=u/r) and Ra{=w/r) are the 9- and D-state radial wave functions and Y}, are the spin-angle functions.
The Hy and Ry calculated from the different potential models are shown in Fig 2. The short-range atructures are
related Lo the Rg and R; functions, and therefore we expect them to be fairly model-independent.

However, the “full” Bonn potential [20] offers an exception. The Ry and R; predicted by this one-boson-exchange
model of the NN intetaction are similar to other predictions at larger r, but they have an additional sharp structure
with a range of ~0.2 fm. We will not consider the possibility of such an additional structure in this work.

IIl. THE DEUTERON

The short-range structure of the deuteron is most obvious in its density distribution pﬂ’ ‘{r*.8) which depends upon
the projection Mg of the total deuteron angular momentum, the distance # from the deuteron center of mass, and
the polar angle 8 of r'; it is independent of the arimuthal angle ¢. Note that the interparticle distance r = 2v', and
the standard normatizations,

/Dw rdr [RY(r) + R3(r)] =1, 3.1

f & gl =2, (3.2)

are used in this work.

t
The p:“ (r') ia given by 16'?:“ (2:’)‘]'2‘ *{2r'), where the factor 16 comes from the difference in normalizations (3.1)
and (3.2). A simple calculation using Eq. (2.5) yields

Alt') = FCoar') - 20s(2)Pafcond)] 33
) = %[00(2!") + C3(2¢")Py(coa8)] , (34)
with
Co(r) = Ry{r) + R3(r) , (3.5)
Calr) = VERA(r)alr) - 3 3(r) - (36)

The intereating structure of these density distributions is shown in Figs. 3-6. Fig. 3 shows p:“(r') along & = 0 and
# = x/2 directions, noting that
P 8=x/2) = pF'(~ 0=0). 37

The above denaities are the largest while p{(r', 0=0) is the smallest as expected from the properties of ©3'3* discussed
in Sec. II. The small value of the ratio pJ(r',# = 0)/p3{r",# = x/2) indicates that the deuteron has near maximal
tensor correlation at distance v’ < 1 fm or equivalently at » < 2 fm. This ratio is ~0 for maximal tensor correlations.



Figures 4 and 5 show the density distributions predicted by the Argonne vyg model in the 'z’ plane. The maximum
value of pg is fairly model-independent (Fig. 3) and large (~0.35 fim=3). The maxima of p§ (Fig. 4) form a ring with
a diameter of ~1 fm, denoted by d, in the 2'y/ plane, while the pJ' has two equal maxima on the #'-axis (Fig. 5) at
z'=1df2.

The three-dimensional distributions p:" (') can be obtained by rotating the distributions shown in Figs. 4 and
5 about the 2'-axis. They are represented by equidensity surfaces shown in Fig. 6 for pg=0.24 and 0.08 fm~?; all
four sections are drawn to the same scale, The maximum value of p}{#=0} ia ~0.05 fm~3 (Fig. 3). Therefore the
equidensity surfaces for p having py >0.05 fm=® cannot intersect the +'-axis, and thus have toroidal shapes shown
in Figs. B and §D. The central hole in these tori is due to the repulsive core in vi's*, and their angular confinement
ie due to the tensor force. In absence of the tensor force, By(r) = 0, the A= p2!, and the equidensity surfaces are
concentric spheres.

The maximum value of pfl(9=r/2) is ~0.10 fm~? as can be seen from Fig. 3. Thercfore the equidensity surfaces
of pfl for pg >0.19 fm== can not cross the f=w /2 piane; they have two disconnected parts forming a dumbbelt as
shown in Fig. 8A. At smaller values of pg we also obtain two equidensity p¥! surfaces (Fig. 6C), consisting of an inner
surface due to the repulsive core enclosed by an outer. At very small pg (<0.05 fm~%) the equidensity surfaces of p}
also have disconnected inner and outer parts, neither close to spherical in shape.

The toroidal shape of the M4=0 equidenaity surfaces is more compact and persists down to smaller p., or equivalently
tolarger values of ', as can be seen from Figs. 3-6. In the classical Skyrmion field theory only this shape is obtained for
the distribution of baryon density in the ground state for two baryons [15]. The deuteron can be considered to be more
deforrmed in the M =0 state. For example, the expectation values of the quadrupole operator Q(r'} = 2 +¥Py(cosd)
obey the relation

Jrer ey e =22 [ ae v (a.8)

It is rather simple to obtain the p!(r’) from the PY(r"). We rotate the p3(r‘) about the /-axis by an angle of r/2
so that the toroidal ring is in y'2’ plane with 2/ as the symmetry axis. This places the deuteron in the superposition
of Ma=x1 states. The My==1 states are cbtained by spinning the rotated toroid about the '-axis, and the p3'(r")
is just the average value of the density of the spinning toroid, i.e.,

2x
o5(s,0) = % j 3(+*, coa™ (sin & cos ) dé. (2.9)
0

The L=1, M=1] atates of the harmonic oscillator, given by ¢(r)=e“’"(z:|:iy). are obiained in the same way from the
¢(r)=e“""z, L=1, M=0 state. Therefore it is tempting to consider the toroidal shape of o3 as the basic shape of the
deuteron. The expectation value of the current operator is zero in the Ms=0 state, therefore one may regard that as
the “static” state of the deuteron. Note that the toreidal shapes cannot be obtained by rotating the dumbbell by #/2
about the y'-axis and spinning it about the 2'-axia. This gives pJ(§=0, ') = pt'(9=x/2,r") which is not true. The
dumbbell- or cigar-shaped density distribution of the deuteron in the Ms=2%1 state has been studied eatlier [13,14].
Unfortunately the toroidal distribution of the Ma=0 state was not studied, and its similarity with the predictions of
Skyrmion field theory was not noticed.

The deuteron electromagnetic structure functions A(g) and B(g), and the tensor polarization Tig(g) in elastic
electron-deuteron scattering have been extensively studied experimentally [21-30] and theoretically [31-34]. They are
usually calculated from the §- and D-wave functions Ry and R obtained from realistic interactions, by including in
the nuclear electromagnetic current, in addition to the dominant impulse approximation (IA) operators, relativistic
corrections and two-body meson-exchange contributions [31,33]. More recently, calculations of these observables based
on quasipotential reductions of the Bethe-Salpeter equation and one-boson-exchange interaction models, constrained
to fit nucleon-nucleon data, have also been carried out [32,34}. The theoretical predictions for the structure functions
based on both the nonrelativistic and relativistic approaches are in good agreement with data. Qur interest here is
ot to improve upon the present theoretical predictions, but to relate the values of the minima and maxima of Tyq @
and H{q) to the size of the torcidal structure in the deuteron. The g-values of these extrema may be shifted by ~10%
by corrections to the impulse approximation used in the following pedagogical analysis.

The charge form factors, defined as

1 s
Foai@) = g [ seenen ase, (3.10)

are shown in Fig. 7. At large g the Fi(g) gets most of its contribution from the two peaks of pl(r') (Fig. 5) at
#'=%d/2. The Fourier transform of the sum of two &-functions at z'=+d/2 is given by coa(gd/2) with zeros at gd=x,

drx, - -. These zeros are due to the cancellstion of the contribution from the two peaks, and they peraist even when
the peaks have a finite width. The firat two minima of F&,(4), obtained from the Argonne vig p}{r'), occur at g,=3.6
and ¢3==12.6 fm~". The effective values d; estimated from the minima g;, using d;=(2i — 1)x/q;, are 0.87 and 0.75 fm
for i=1, 2. ‘These values are smaller than the diameter d=1 fin because the dumbbell ende (Fig. 6A) are not spherical.
Nevertheless the minima of Fé.l seem to be primarily determined by the diameter d of the maximum-density torus.

‘The Fourier traneforma of a disc of thickness ¢, with q perpendicular to the disc, are proportional ta sin{gt/ /et )2)
irrespective of the shape of the disc. These have reros at gt=2r, 4x, - - -, which may be used to obtain the thickness ¢,
The first two zeros of F o{g) at ¢=9.2 and 10.5 fm~! (Fig. 7) give values 0.68 and 0.64 fm for the effective thickness
of the torus. The maximum thickness along the z-axis of the calculated equidensity surface al half maximum density
is 0.88 fm.

The Tzo{q) form factor of the deuteron has small magnetic contributions which depend upon the electron scattering
angle 8. The extrema of Tgp ere not significantiy affected by this magnetic contribution as can be seen from Fig. 8
and ignoring it we obtain a rather simple squation:

Faole)— F2 . lg)
Fg,n(ﬂ + 2Fé,1('1).

Its minima occur when FZ,(g)=0, while the maxima have FZ 4(g)=0. These minima and maxima correspond io
those valuea of g at which the recoiling deuteron has only My=0 or My==1, respectively. The first minimum of Taq
is experimentally known to occur at ¢ ~3.520.5 fm~! in sgreement witk the value d ~1 fm predicted by realistic
potentials. The first maximum of T3 has not yet been experimentally located; it provides a measure of the thickness
i

In magnetic elastic scattering the deuteron spin projection M in the q direction changes by +1 since the photlon
has M, =21. Thus the magnetic form factor Fjy(g) is a transition form facior. It has convection current and spin-flip
teemss [31,33] of which the latter is dominant. The Fir(g) calculated with and without the convection current term
are not too different (Fig. 9). The spin flip part of Far{g} can be obtained from the transition density Pre(r):

Tao(g) ~ —v2 (3.11)

F (@) = o+ ) [0 puter)ee, (3.12)
Aty = % { Rij(2r') — %R§(2r’) - % [\/530(2#)3,(2:-‘) + Rg(zf)] Pa(cos 9)} . (3.13)

This transition density is shown in Fig. 10; it is dominated by the toroidal p3(r'), and its efective thickness along 2/
axis, obtained from the zeros of Fas(g) (Fig. 9), is ~0.85 fm. The minimum of Fas(q) is observed [26] at g ~ 7 fm~1,
suppotting the theoretical estimates of £.

The deuteron wave function in momentum space is defined as

£ = s [ atr el

= Ralk) YH1(E) + Ralk) V(K | (3.14)
with
Rolk) = i5/Tm fo ” dr P (ERL(r) ' (3.15)
The momentum distributions 75'*(k), given by ‘ij"' (k)¥*+(k), are then easily obtained as
k) = 3‘; [Cotk) — 28a(kba(cont)] (3.16)
) = - [Cotd) + Colt)Palcont)] @1n

where 8, is the angle between k and #-axis, and the ' (k) are defined as in Egs. {3.5}-(3.6) with Rr(r) replaced by
Rp (k). Note that the g4 are normalized such that

f &k Meky=1 . (3.18)



The momentum distributions F3(k,8;) and 53! (k,8.) for 8 = 0 and r/2 are shown in Fig. 11, Note that
Bk, Bu=x/2) = FE'(k,0,=0) . {(3.19)

The zeros of 75 (k, 6x=0) and F}(k,6,=0} occur at k = 1.5 fm~" and 5.2 fm~, respectively, and are related to the
spatial dimensione of the torus. In naive estimates these minima occur at x/2d and x/t, respectively. Thus measuring
the positions of the zeros in these momentum distributions would provide an independent estimate of the spatial
dimensions of the toroidal structure in the deuteron. This information would be complementary to that yielded by
elastic form factors measurements.

The momentum distributions ,Ef‘(k, #y) could in principle be measured by (e, ¢'p) scattering on polarized deuterons.
In the one-pholon exchange approximation the d-'[c, e'p)n cross section, in the laboratory frame, is generally expressed
a8

dbaMe N
dE o, Mo PoEy B (v Ry +vp By + vprRer +vrr Brr) (3.20)
E,En Egpn . .
Eo Nl aid | W Lol 3 .
Rrec - |1 Eory By ' Pnl (3.21)

where My is the targel spin projection, E; and (¥, ate the energy and sclid angle of the final electron, and €, is the
solid angle of the ejected proton. The coefficienta v, ate defined in terms of the electron variables, while the structure
functions R, involve matrix elementa

{n+ 2 Papp Mo M, | O 1{q) 1 2, My) | (3.22)

of the charge (Or) and current (Or) operators between the initial deuteron and final n + p states. The neutron
momentumn i8 p,=q ~ Pp, q is the momentum transfer, pm=-pn is the missing momentum, and M, and M, are the
proton and neutron spin projections, respectively [33]. The cross section for unpolarized deuterons,

dis 1 doM (3.23)
dEjd0dD, T 3, L dEdD, )

hasa been menaured up to pm ~500 MeV/c, and there is good agreement between theory and experiment {35].

In plane-wave-impulse-approximation (PWIA), obtained by neglecting interaction effects in the final n + p states
as well as relativistic corrections and two-body terms in the charge and current operators, the Mj-dependent cross
section is proportional to

A Ma .
— & R 24
s, < A4 ) (3.24)

Using, for example, tensor polarized deuterium, it should be possible to measure the difference between 53{p.,) and
55" (Pm), and therefore empirically determine the positions of the minima in these momentum disteibutions. Clearly,
such an analysis is justified if the PWIA is valid. This assumption has been tested by carrying out the full and PWIA
calenlations of the d*M¢ /dEdQY. dQ, in paralle]l kinematics with ¢ fixed at 500 MeV/c, w in the range 290-390 MeV,
and the electron scattering angle 8, = 10°. The results, shown in Fig. 12, indicate that, while FSI, two-body current,
and relativistic corrections are not entirely negligible, at least in the kinematical region which has been studied here,
their effect is small compared to the difference between the crosa sections for My=0 and +1. We therefore conclude
that the results of such an experiment could be used to empirically study the diameter and thickness of the torus. One
might argue that this information could be more easily obtained from elastic form factors measurements, as discussed
above. However, it should be realized that, in contrast to the d(e,e’)a‘- data, the double-coincidence data would allow
us to ascertain to what extent thie toroidal structure is due to nucleonic degrees of freedom.

IV. THE TWO-NUCLEON DENSITY DISTRIBUTIONS IN NUCLEI

The two-nucleon density-distributions in T, 5, M7, M5 two-nucleon states are defined as

J
1
rTMny = 3o (EM Y Bi(e, T, S, Me, Ms) M) (4.1)
+1 My==1 igj
T

Here |¥™1) denotea the ground state of the nucleus with total angular momentum J and projection My, and
Fii{r. T, S, My, Ms) projects out the specific two-nucteon state with r; — r; = r. For N = Z nuclei, the wave
functions used in this study are symmetric under exchange of neutrons and protons; hence p‘,‘f }'H’ (r) is independent
of Mr. For 3He, we have :

-LMs _ .

+1, Mg __ oM
PLs 1S =25t

PLs PLs” (4.2)

while for larger N # Z nuclei, the My dependence is nontrivial. In the following we discuss p,.‘f_’.,-. the average over
My of p#.fs'”’. ‘The p#.‘j ia normalized such that

T)s_; @T+1) / () & = %A(A—l) ) @)

which is the number of pairs in the nucleus, It is a function of r and # independent of the azimuthal angle ¢.
It can be verified from Eqe.(3.3-3.6) and (4.1) that in the deuteron

1 1
Pl = g x g el = ey (wn

Note that the spin-dependent two-body density on the left (Ms = M) is an average over projections My in the
deuteron, while the polarized one-body density on the right (M4 = M) has been summed over spins. The p#-{; in
4He, %7Li, and 1°Q have been caleulated from variational wave functions using Monte Carlo techniques. For the A
< 7 nuclei, these wave functions minimize the expectation value of 8 Hamiltonian consigting of the Argonne v 5 two-
nucleon and Urbana IX three-nucleon potentials {7] (for A = 8,7 the minimization is constrained by the experimental
rms radii); a detailed description of the form of the wave functiona is given in Refs. [9,10]. The wave function for 60
wad abtained from the variationally best wave function by slightly increasing the radius of the single-particle part of
the wave function so as to reproduce the experimental rme radins of 0. The details of the 180 wave funetion will
be published elsewhere [12]. A cluster-expansion including up to four-body clusters with Monte Carlo integration j11]
was used to compute the two-body densities in 190,
To reduce statistical fluctuations in the catculation, we write

#7530 = 3 A% L(rIPL(cost) (45)
L=0,3
and directly corpute the A(r} as
My oa_ 1 241
Argelr) = T+1 ar *
My ! 1 & A M.
3 [ ¥ (m) 3 Sblr— i) Pe (5 - 8) Py(T. 5. Ms) ¥M1(R) | (4.6)
M. e T
5 2
where R represents the coordinates ry,...,r.. Because of the average over the total spin of the nucleus, the A.,Ai";- L
are zero for L > 2, and -
A’r.iﬂ.ho = A‘J"‘,;:fl:ﬂ s (4.7}
M:fe:?.:.:z = _2*‘-‘3"“,5:?,11,:1 . (4.8)

For the deuteren, the Aﬂf{"L are related to the Cr of Eqs.(3.3-3.8) by Agfio = Cy/48; Aa.l.ﬂ = C3/48.
The shapes of p‘g.‘f (r,8) are very similaz at ¥ < 2 fm in all the nuclei considered. In arder to study the evolution of
pﬁ’ with A we divided the pgfl’ (7,8)a by the ratio Raq defined as

_ Max(g5i(r.8)a)

4= e (i m o) “9

The densities 30 norm*a.lized are compared in Fig. 13, and the values of R4 are listed in Tsble I. Fig. 13 shows
204(r 0 = 0)a/Rag Pa1{r.0 = x/2}4/Ra4, and Paa(r 8 = xf2)afRaa for TH, *He, and 0. Note that P, (r.8=

8



7/2) = gy} (r,8 = 0) by virlue of equations (4.4), (4.6) and (4.7) in all nuclei. After normalization by R4, the vatious
densities for “He lie between those of *H and *He, while those for ®7Li are in between the *He and 150 results. It
ia ebvious from Fig. 13 that the equidenaity surfaces of the two-body density 5.1 are very similar to those of the
deuteron density shown in figures 3-6 at r < 2 fm (r' < 1 fm). At r < 2 fm the ratio g ,(r.8 = 0)}/6f \(r 8= /)
is very, small, indicating that the tensor correlations have near maximal strength in all the nuclei considered. In 150
the 5’7 becomes approximately independent of Ms only for r 2 3 fm.

Bethe and Levinger suggested in 1950 [36] that at small distances the relative 7,5 = 0,1 nentron-proton wave
funetion in a nucleus is likely to be similar to that in the deuteron. We find that this is a good approximation. The
expectation value of sny short-ranged two-body operator that is large only in the T, 5 = 0,1 atate scales as R44. In
Table I we list values of the ratios of the calculated expectation values of the one-pion exchange part of the Argonne
v1g potential, the observed low-energy (L18 MeV for 3He [37] and *He [38], and 115 MeV for *Q [39]) pion absorption
cross sections and the average value of the abserved photon absorption cross sections in the range £, = 80 to 120
MeV. All these processes are dominated by the T, 5 = 0, 1 paira, and seem to scale as B 4.

While comparing these ratios in detail it should be realized that {v.) in nuclei has a relatively small contribution
from T', 5 # 0,1 states, absent in the deuteron, which makes {ve}4/{vx}q slightly larger than R4, The {veda=-213
MeV for the Argonne vig model, and it accounts for most of the deuteron potential energy, (v)a = ~22.1 MeV. Also in
larger nuclei, the {ve).4 gives a large fraction of the total two-body interaction energy [11). Direct comparison of the
ratio of pion absorption cross sections with R4z may not be strictly valid. The scattering and absorption of pions by
spectator nucleons, absent in the deuteren, is expected to reduce the ratio a3y 4/ 05, 41 while three-body and higher
absorption mechanisms, also absent in the deuteron, will increase it. After cotrecting for final state internctions of
the two outgoing protons, the two-body (x*, pp) part is estimated to account for ~ 76% of the total absorption cross
section for 116 MeV ¥ by %0 {39} In *He ~ 20% of the 118 MeV x* absorption cross section has thres-body
character [37], however a part of this 20% must be due to initial and final state interactions.

Results of Maing experiments [40] on Li and '°0 are used to calculate the average valie of o7 in the energy interval
E, = 80 to 120 MeV. The o, ; averaged over the same energy interval is ~ 0.072 mb [41]. The only available data
for *He in this energy tange are from the experiments done in the 1960°s (42] and 1970' [43). The average cross
section of the two-body photodisintegration of 3He, in the energy range 80-120 MeV, ia ~0.03 mb [43], and that for
the three-body process is ~0.10 mb [42], giving total cross section of ~0-13 mb. The average cross section for total
absorption of photons by *He in the same energy range is crudely estimated from Fig. 1 in ref. [44] to be ~0.3 mb.

The total number of pairs with given T, 5 in nuclei can be computed as

Mo =S @r+12r f r2dr deosd p3(0)a
Ms

= (2T + 1)(25+ 1) 4x j rldr A% go(r) ; (4-10}
the values for T, S = 0, 1 and the corresponding naive independent-particle mode) values are also shown in Table I. We
see that the correlations induced by the potentials do not significantly change the N,;fl from their independent-particle
(IP) values; however, as will be discussed later, this is not true for T=1 pairs. For few-body nuclei, R4 is significantly
larger than Nf,, however, in 2%0 N, han a large contribution from paits with large r and Rag is smaller than N,
The calculated value of R4y for 10 is much smaller than Levinger's estimate R4 ~ BN Z/A {36].

The p}="(r,# = #/2} has its half maximum value at r ~1.8 fm (Fig. 13}. If we identify the region with r < 1.8 fm
as the “quasi-deuteron”, then the probability that the np pair in a deuteron is in the quasi-deuteron region is ~0.25,
and the number of quasi-deuterons in a nucleus is ~ R4q4/4. In the past, however, R 44 itself hag been intetpreted as
the number of quasi-deuterons in the nucleus.

V. TWO-CLUSTER DISTRIBUTION FUNCTIONS

The strong spin-dependent anisotropies of the two-nucleon densilies suggest that three-nucleon and higher distri-
bution functions in nuclei could also be anisotropic. A general study of these kigher distributions is beyond the scope
of this work; however the two-cluster distribution functions di in He, dd in “He, and od in SLi are simple to study
with the Monte Carlo method [45]. They provide some information on the higher distribution functions, and may be
relatively accessible by (e, ¢'d) and (¢, £'P) experiments.

The two-cluster overlap function can be written generally as

Aas(Ma, My, My, Tas) = {ARHGM ) |9H7) (5.1)

= Y (EMUSMSIIMINI Mooy |SMs)Ru(ras)Yim, (7as) |
LML 5Ma
where t,; o the is the relative coordinate between the centers of mass of the two clugters and A s an antisymmetrization
operalor for the two-cluster state. The Rz (ra) radial functions can be evaluated from

Re(ra) = 3 (M JiMISMs) (LML SMsd My)
M M MM

[ A o) XS sy, (52)

where Ru(s) represents the coordinates of particles in cluster a{b). We note that in PWIA the (e, ¢'@)¥ cross section is
proportional to the momentum distribution H,.(M,, M, M;,k)]? obtained from the Fourier transform of the averlap
function Aa(M,, My, Mr,ea).

In the present work, the integrations have been made with Monte Carlo techniques akin to Ref. [45], but with
some improvements. Configurations are sampled with the weight function [WM+|? containing the full variational wave
function. In Ref. {45) only a single term in the antisymmetric product in Eq. (5.2} is calculated. The cfficiency of the
Monte Carlo sampling has been improved by evaluating ali possible partitions of the nucleus into clusters a and b at
each configuration R. We also use a much larger sample of configurations than in the previous calculations.

We ean define a two-cluster wave function, in analogy with the deuteron wave function of Eq. {2.5), using the radial
overlap functions

W (ta) =3 Relra) VI (Fas)
s

= Z Au(Ms, My, My, vy | (5.3}
MM,

where M+ and x™* denote spin states .M, and J,M, of @ and b. For the cases ab = dp, dd, snd od there are both
5- and D-wave states in the two-cluster wave function. In these cases the well known [J; parameter can be defined
by means of the Ro(r) and Ra(r) radial functions [46]:

ab _ l R?("Ai)":ﬂi"ai
D = BT Re(ran)ridras 49

Although in the p t paper we emp the short-range structure of nuclei, it is also interesting to study the
asympiotic behavior of the overlap radial functions. Of particular interest is the asymptotic D/S ratio gy = C22/G3%,
where g and Cy are the asymptotic normalization constants of Ry(r} and Rs(r) respectively:

Re(rasy= lim —itCP*he(ioaira). (5.5)

N

Here h, is the spherical Hankel function of first kind and a4y is the wave number associated with the separation energy
of the nucleus into clusters a and 5. We must point out that the present variational method, as well as the GFMC
method, determine the wave functions by energy minimization, to which long-range configurations contribute very
little. Therefore these methods are not very sensitive to the ssymptotic part of the wave functions, and consequently
our values for . should be considered only 2s estimates.

The two-cluster density distribution for a given set of spin projections is defined as:

AU MM r0r) = [ Aar(Ma, Ma, My, ) (5.6)

In each of the cases studied here, it exhibits spin-dependent spatial anisotropics which are easily understood in terms
of the toroidal or dumbbeli structure of the polarized deuteron. The density is enhanced in the direction corresponding
to the most efficient or compact placement of the deuteron with the remaining cluster, and reduced ia those directions
that would lead to very extended structurea.

Finally, we are also interested in the total normalizations Ny of the 5- and D-wave two-cluster distributions:

Nt = jo ridra Rifra) . (5.7)

These quantities can be related to spectroscopic factora and give the total §- and D-state fractions. All the results
presented here are obtained from the Argonne vig two-nucleon and Urbana model X three-nucleon interactjons.
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A. d7 Dlstribution in *He

The calculated Ro{ry;) and Ra(ryp} are shown in Fig. I4; the R3(rg,) is negative and smaller in magnitude than
the R; in deuteron (Fig. 2). The DY value cbtained with these radial functions is ~0.15 + 0.01 fm?, a little smaller
than experimental estimates, ranging from —0.20+0.04 to —0.25 +0.04, obtained through DWBA analysis of (d,?He)
transfer reactions [46]. In Fig. 14 we also show our asymptotic fil to the 5- and D-waves. The result is 14y = —0.035,
somewhat smaller than the Faddeev result [47], —0.0431+0.001. Experimental estimates, also obtained through DWEBA
analysis of (d,3He) tranafer reactions, range from —0.042 + 0.007 to —0.035 = 0.006 [46].

The total normalizations are N:P =1.31 and N;’ = 0.022. The sum, 1.33, can be interpreted as the number of
deuterona in *He [45]. It is less than 1.49 (Table 1), the number of T,5 = 0,1 paits, because the pairs are not always
in the deuteron state. It is also smaller than R.a = 2.0 inferred from short range distribution functions (Fig. 13 and
Table I). This is probably because *He is more compact than the deuteron.

11

The p::j'i and p:;,_%'i are shown in Figs. 15 and 16. When M, = 0, the M, = +{ proton is preferentially along
the z-axis; In contrast, when My = 1, the M, = —} proton is more likely to be in the zy plane. In the first density
distribution the 5- and D- wave amplitudes interfere constructively, to enhance the probability of finding the proton
along the z-axis, whereas in the |atier the interference is constructive on the transverse ry-plane. Consequently Ry
and Hj have opposite signs and D:F and f4, are both negative. The spin-dependent 4 anisotropies are favored by
both tensor and central forces, and lead to more compact three-body states.

The momentum distribution of dp clusters in My = § 7He is shown in Fig. 17 for My, M, = 0, } and |, ~}
for momenta paralle]l and transverse to the z-axis. In PWIA the ’H.e(e.e'ﬁ)d cross-seclion is directly related to
these momentum distributions. A large spin dependence of the missing-momentum distribution for protons ejected
in parallel kinematics is predicted for q parablel to . The minimum for the momentum distribution along +-axis for
My = +1 occurs at ~1.4 fm~, while that for M, = -1 is at ~2.4 fm~1. Thus the spin asymmetry, (n; —n,}/(n;+n,),
of the protons ejected from polarized ®He changes from ~ -1 to +1 a3 the missing momentum varies from ~1.4 to
2.4 fm~! in parallel kinematics and PWIA_ The dp momentum distribution in unpolarized ®He has been atudied at
Saclay [48] up 10 ~2.5 fm~". The observed distribution is generally smaller than the PWIA prediction [35] indicating
attenuation due to FSI. However, a part of the FSI attenuation will cancel in the asymmetry, and moreover, it is now
possible to perform continuum Faddeev calculations [48) including FSI.

B. 4 Distribution in 'He

The calculated Ro(ras) and By{ryy) are shown in Fig. 18. The D§® value obiained with these radial functions is
—0.12 20.01 fm®, In Fig. 18 we also show our asymptotic it to the S- and D-waves. The result is nge = —0.091. The
integrals of these functiona yield N3 = 0.98 and N§¢ = 0.024. The number of deuterons present is greater than twice

the sum of these quantities, 2.0, when one allows for the additional presence of d + p 4 n configurations. The pg;f'n

and pki Y are large in *He and their anisatropies, induced by the tensor interaction and the shapes of deuterons, are

shown in Fig. 18. The pﬂf'o is largest when rgq is nlong the z-axis, i.e., when the deuterons are in the toroidal shape
and have a common axis. It is smallest when ryy is transverse (two tori side by side) and equal to that for p.li';l'o with
T44 parallel to 7 (two dumbbells in a line). The latter distribution is of intermediale strength when r.y in teansverse
(two dumbbells side by side). Again in the first {second) density distribution the S- and D-wave amplitudes interfere
constructively (destructively) along the i-axis. Therefore Ry and R; have opposite signs and D34 and rg4 are both
negative,

The mormenturn distributions sre also anisotropic (Fig. 20). In particular the ,ﬁ:f'"(k.i) has a dip at & ~1.7 fin~?
that is absent in the ﬁ:&'l'o(l-z'). It may be possible to study these with (¢, ¢'d) reactions. The unpolarized ‘He(e, e'd)d
reaction has been studied at NIKHET [60]. The observed cross sections are much smaller than eatimates using the dd
momentum distribution and either PWIA or DWIA.

C. od Distribution In *Li

The calcnlated Ro(rad) and Ry(rqq) are shown in Fig. 21. The Ry(raqd) and Ra(raq) both exhibit nodes at short
distances and have opposite signs almost everywhere. This nodal structure hna been predicted in a+danda+p+n
cluster models, but nat always with the correct relative sign [51]. The asymptotic behavior is correlated with the
quadrupole moment ; obtaining the experimental value of —0.08 fm?® has been a long-standing problem in e +p+n
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cluster models. The variational wave function uged here gives ¢ = —0.8 & 0.2 fm?, i.e., the correct sign but far too
farge in magnitude. Small changes in the long range part of the 5Li wave function have effects of order 1 fm? on the
quadrupole moment. Thus the values of the asymptotic properties, D§4=—0.29 fm? and 5,4=-0.07+0.02, obtained
with this wave function may not be very accurate. The total normalizations are N§? = .82 and N§¢ = 0.021.
The resulting spectroscopic factor, 0.84, is in good agreement with the value of 0.85 cbtained in radiative capture
experiments {62].

The two-tluater densilies p?.';""M’ (r), multiplied by r?, are shown in Fig. 22. They have two peaks; the smaller
ixsner peak at r ~ 0.8 fm is almost :H:herically symmetric, while the larger peak at r ~ 4 fm is anisotropic. In particular
Pod’ (rZ) is much larger than p:':' (r£) for r > 2 fm. In the former configuration the r is along the axia of the torus,
while in the latter it is transverse. This anisotropy is also a consequence of the toroidal shape of the deuteron in the
My=0 state.

V1. OTHER T,5 CHANNELS

In this section we discusa the properties in nuclei of pairs of nucleons with 7,5 = 0,0, 1,0, and 1,1. Like the
T,5 = 0,1 channel discussed in the previous sections, the 7,5 = 1,1 channel also has & tensor potential, but it has
the opposite sign of that for 7,5 = 0, 1. Therefore the role of Mg is reversed compared to that in T = { states;
Ms = 0 pairs have maximum density a.lo;)‘g the z-axin, while Ms = &1 pairs have maximum density in the zy plane
as can be seen in Fig. 23, which shows p'? (r,8)/R{, for *He, °Li, and '°0. The curves for Ms = x1, # = x/2 are
between the two sets of curves shown in the figure; to reduce clutter they are not shown. The curves for *He and Li
have been renormalized by the factors R{, to have the same peak height e for 60; these factors are shown in Table
[1. We see that the shapes of the T,8 = 1,1 density profiles are quite different in the different nuclei and that the
anisotropy decreases as the number of nucleons increases.

The analog of the deuteron in the 7,5 = 1,0 channel is the 'Sy virtual bound state {VBS). For the Argonne v
polential, this is a pole on the second energy sheet at E = —0.098 MeV or £ = —0.049i fm~. Although the wave
function is not normalizable, it has a local peak which we acale to compare to the unpolarized deuteron in Fig. 24.
We see that it peaks at & slightly larger radius and is broader. The figure also shows the pf (*)/R{; of 1He, ®Li, and
180); the curve for 3He is between those of *He and Li, while the curve for 7Li is very close to that of SLi. Again the
eurves have been normalized to the peak height of the 180 density. We sce that the short-range shapes of the plpin
nuclei are well reproduced by the VBS density. Finally, Fig. 25 shows the densities for the T, 5 = 0,0 channel, again
normalized to '50. Aa is the case for T, § = 1,1, there is no common shape.

Table 11 also shows the number of pairs, Nf 5, in these T, 5 channels and the corresponding IP values. As is the
case for 7,5 = 0,1 (Table I), the number of pairs increases more rapidly with A than does Rf‘.s: because of the
increasing proportion of pairs with large separation.

Using the projection operators (1—7;-;}/4 and (34 7;-7;)/4 for T = ¢ and 1 pairs we find that the total number
of T =0 and 1 paits in a nucleus depends only on its mass number A and isospin Ty:

1
Mo+ NS = §[ A® + 24— 4Ty (Ta + 1)), (6.1)
1
Nfo+ N = 3 (347 — 84+ 4TA(Ta + 1)) - (6.2}
The above relations are obeyed by N,‘.. s obtained from either the /P or correlated wave functions, since, in the present

study, both are eigenstates of Ty.
If the total spin,

Sa4= Z‘: %a-i . (6.3)

were ta be a good quantum number we would have similar relations,
N+ Ny = % [ A*+24-455(54 + 1}, (6.4)
N+ Ny = % [347 — 64 +454(Su + 1)] (6.5}

for the total nuember of pairs with spin 0 and 1. They are obeyed by the N,f'}s calculated for the TP siates which have
54 =1,5.0,1,3 and 0 for *H, *He, *He, °Li, "Li and 1%Q respectively. However, 5, ia not & good quantum number;
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tensor correlations admix states with larger Sy in the ground state. These reduce the N{%, and increase the Nl‘.l by
the same amount due to Eq. (6.2). In *He (*He) the N{%, is given by 1.5Pp (3Pp), where Pp is the fraction of £ = 2,
Sa = § (84 = 2) state in the nuclear ground state.

The interacticn in the T, 5 = 1,0 stale is much more attractive than that in the 7,5 = 1,1 state. Hence the
depletion of T, 5 = 1,0 pairs by tensor correlations reduces the binding energy of nuclei significantly. For example, in
4He the T, S = 1,0 interaction gives —14.2 MeV per pair, while the T, S = 1,1 interaction gives only —0.8 MeV per
pair. Thus the conversion of 0.47 T'=1 pairs from $=0 to 5=1 state raises the energy of *He by ~ 8.3 MeV. It ehould
be streased that this is a “many-body” effect absent in the two-body cluster approximation of either Brueckner or
variational methods. The tensor interaction between nuclecns i and j can flip their spins and convert pairs ik and/or
31 from §=0 to S=I.

VII. CONCLUSIONS

The main conclisions of this study of nuclear structure, as predicted by realistic models of nuclear forces, are:

(i) The static part of the iwo-nucleon potential in T, 5, Ms = 0,1, 0 atate has a large angular dependence due to
the tensor interaction dominated by one-pion exchange. At r ~ 1 fin the difference between this potential at & =
x/2 and 0 i8 ~ 300 MeV in most models (Fig. 1}, It confines T, 5, Mg = 0, 1,0 pairs to the small # region producing
toroidal distributions. The central hole in these tori is due to the repulsive core in NN jnteraction. The maximum
density in the tori is large, due to which the peak one-body density in deuterium exceeds 0.3 fm™=3 in most modela.

(it) The mote familiar dumbbell {or cigat) shaped density distribution of the deuteron in Ms==1 states can be
considered as that produced by a rotating torus.

(i) The diameter of the maximum density torus, and the thickness of the half-maximum denaity torus are predicted
to be ~ 1.0 and 0.9 fm, respectively; these values are supported by the observed elastic electron-deuteron scattering.

(iv) The pair distribution functions in T,.5 = 0, ! states indicate that the tensor correlations have near maximal
strength in all nockel considered hete for v < 2 fin.

(v) The pair distribution functions in T', § = 0,1 and 1,0 states in different nuclei, can be scaled to lie on universal
surfaces for r € 2 fm. These universal surfaces are predicted by the density distributions of the deuteron and the
15y virtual bound state. The scaling factor Ruq for the T, 5 = 0,1 densities provides a rigotous definition of the
Levinger-Bethe quasi-deuteron number of the nucleus. The calculated values of R 4 are significantly different from
estimates based on independent-particle models, and in qualitative agreement with photon and pion absorption data.

(vi} The many-body distribution funclions are also predicted to be anisotropic. In particular the anisotropies of
the cf_ﬁ, ;J, and ad distributions in 3He, *He and L are strongly influenced by the torcidal structure of the deuteron.

(vii) Tensor correlations convert T'=1 pairs of nucleons from S=0 to $=1 state. This many-body effect reduces the
binding energics of nuclei. It does not appear as if many-body effects reduce the magnitude of tensor correlations for
the range of nuclei studied here: 2H to 190.

Due to the small size of this toroidal structure it may be worthwhile to attempt to understand it from the more basic
quark degrees of freedom. Within the constituent quark model [54,55] it requires a solution of the six-quark problem
with a suitably chosen Hamiltonian. Many attempts have been made (see Refs. [56-58] for example) Lo calculate
the nucleon-nucleon interaction from approximate solutions of the six-quark Hamiltonian, A direct coupling of the
pions to the quarka is used to obtain the tensor part of the interaction. The toroidal structure is presumably very
sensitive to this coupling and to the tensor part of the quark-quark interaction in the framework of the constituent
quark model.

As is well known, toroidal structure for the ground state of the deuteron was predicted many years ago [16,17] using
classical Skyrme field theory [15] related to QCD in the N, — co limit. In the classical limit one obtains a torcidal
shape of ~ 1 fm in size and & binding energy of ~ 150 MeV. From Fig. 1 it is obvious that in the classical limit realistic
models of nuclear forces would also give a deuteron binding energy in the 100 to 200 MeV range. There have been
attempts to include quantum corrections to this theory. A recent calculation [18] obtains an energy of —6.18 MeV for
the deuteron in this model. Ground states of the classical Skyrme field with baryon numbers 3 to 6 have also been
studied [19]. The baryon equidensity surfaces of these classical solutions are highly anisotropic. However, the nucleon

equidensity surfaces of the J* = %* and 0 3He and *He must be spherically symmetric, thus a direct comparison

is nat passible. Nevertheless the anisotropic dp and dd distributions in JHe and ‘He may have some relation to the
baryon density distributions in the Skyrme model.

ACKNOWLEDGMENTS

The aathors wish 1o thank Btian Pudliner for many interesting discussions. A.A. wishes to thank A. M. Eird for
useful discussions on the two-cluster overlap functions. R.B.W. wishes to thank Dieter Kurath for useful comments
on constructing wave functions for %7Li. The calculations were made possible by granta of computer time from
the Mathematics and Computer Science Division of Argonne Nationa! Laboratory, the Pittsburgh Supercomputing
Center, the Cornell Theory Center and the National Energy Research Supercomputer Center. The work of J.L.F,
¥ R.P. and A.A. has been partially suppotted by U.5. National Science Foundation via Grant No. Phy$4-21300, that
of S.C.P. and R.B.W. by the U.5. Department of Energy, Nuclear Physics Division under contract No. E-31-108-
ENG-38, that of A.A. by Universidade de Lisboa, Junta de Investigagao Cientifica e Tecnolégica under contract No.
PBRIC/C/CEN/1108/92, and that of R.S. by the U5, Department of Energy.

* Eleclronic address: j-forest@uiuc.edn
1 Electronic address: vijayGrsm1.physica.uinc.edn
! Flectronic address: spieperGanl.gov
5 Electronic address: wiringa@itheory.phy.anl gov
¥ Electronic address: schiavillaficebaf.gov
** Electronic address: arriaga®alfl.cii fc.ul.pt
[1] G. van der Steenhoven and P. K. A. deWitt Huberts, in Modern Topics in Electron Scattering, Ed. B. Frois and L. Sick,
World Scientific, p. 510 (1993).
[2] V- R. Pandbaripande, Nucl. Phys. A563, 191¢ (1993).
(3} R. V. Reid, Jr., Ann. Phys. {N.Y.) 50, 411 {1968).
[4) M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Cét4, P. Pires, and R. de Tourceil, Phys. Rev. C 21, 861 (1980).
[5} L. E. Lagaria and V. R. Pandharipande, Nucl. Phys. A359, 331 (1981).
[6} R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).
[} B. 5. Pudliner, V. . Pandhatipande, J, Carlson, and R. B. Wiringa, Phys. Rev. Leti. T4, 4395 (1995).
[8} B. S. Pudliner, Ph.[. Thesis, University of Illinois at Urbana-Champaign, 1996.

J. M. Verbaarschot, T- S. Walhout, J. Wambach and H. W. Wyld, Nucl. Phys. A468, 520 (1987).
A. Leese, N. 5. Manton and B. J_ Schroers, Nucl. Phys. B442, 228 {1595).

[19] E. Braaten, L. Carson and S. Townsend, Phys. Lett. B238, 147 (1950).

[20] R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 148, 1 (1987).

[21] R. G. Arnold et al., Phys. Hev. Letv. 35, T76 (1975).

22] G. G. Simon, Ch. Schmitt, and V. H. Walther, Nucl. Phys. A384, 285 {1981).

23] R. Cramer et al, Z. Phys. C 28, 513 (1985). -

24] 8. Platchkov et al., Nucl. Phys. A510, 740 (1990).

25] 8. Aufret et al., Phys. Rev. Leti. 54, 649 (1985).

26] R. G. Anold et al., Phys. Rev. Lett. §8, 1723 (1987).

[27) M. E. Schulze et al, Phys. Rev. Lett. 53, 597 (1984).

28] 1. The et al., Phys. Rev. Lewt. 87, 173 (1991).

29) V. F. Dmitriev et al., Physa. Lett. 1678, 143 (1985).

30] R. Gilman et al, Phys. Rev. Lett. 856, 1733 (1990).

31] W. Fabian and H. Arenhovel, Nucl. Phys. A258, 461 (1576).

32} E. Hummel and 1. A. Tjon, Phys, Rev. Lett. 83, 1788 (19839).

[33] R. Schiavills and D. Q. Riska, Phys. Rev. C 43, 437 [1991).

[34] . W. Van Orden, N. Devine, and F, Gross, Phys. Rev. Lett. T8, 4369 (1995).

[35] ). M. Laget, in Modern Topics in Eicetron Scatiering, Ed. B. Frois and 1. Sick, World Scientific, p. 290 (1991}.

[9} A. Arriaga, V. R. Pandharipande, and R. B. Wiringa, Phys. Rev. C 62, 2362 (1995}.
{10} R. B. Wiringa, 5. C. Pieper, and B. 5. Pudliner, in preparation.
{11} S. C. Piepet, R. B. Wiringa, and V. R. Pandharipande, Phys. Rev. C 48, 1741 (1992).
{12} S. C. Pieper, in preparation.
13] T. E. O. Ericson and W. Weise, Pions and Nuclei, Oxford University Press (1088).
14] J. M. Blatt and V. F. Weisskopt, Theoretical Nuclear Physics, John Wiley and Sons, New York {1952).
15] V. G, Makhankov, Y. P. Rybakov and V. L. Sanyuk, The Skyrme Model, Springer-Verlag (1993).
16] V. B. Kopeliovich and B. E. Stern, JETP Lett. 46, 203 {1987).
3.
R.
E.

14



[36] J. 5. Levinger, Muciear Photo-disintegration, Oxford University Pross (1360).
{37] T- Alteholz er al., Phys. Rev. Lett. T3, 1336 (1994).

[38] A. O. Mateos, Ph.D Thesis, Massachusetts Institute of Technology, 1995.

39] D. J. Mack et al., Phys. Rev. C 48, 1767 (1992).

40] J. Ahrens, Nucl. Phys. A448, 220: (1985).

41] D. A. Jenkins, P. T. Debevec, P. D. Harty, Phys. Rev. C 50, T4 (1994).

42] V. N. Fetisov, A. N. Gorbunov, and A. T. Varfolomeev, Nucl. Phys. 71, 305 (1965).

43] N. M. O'Fallon, L. J. Koester Jr., and J. H. Smith, Phys. Rev. C 5, 1926 (1972).

44] Y. M. Arkatov ¢t al, Sov. ). Nucl. Phys. 31, 726 {1080).

45] R. Schiavilla, V. R Pandharipande and R. B. Wiringa, Nucl. Phys. A449, 219 (1586).

[46] A. M. Eité and F. D. Santoa, J. Phys. G 16, 1139 (1990).

47} 1. L. Friar, B. F. Gibson, D, Lehman, and G. L. Payne, Phys, Rev, C 37, 2859 (1988).

48] C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988).

49] W. Glockle, H. Witala and Th. Cornelius, Nucl. Phys. AB508, 115c {1990).

50] R. Ent et al,, Nucl. Phys. ABTS, 93 (1594).

[53] V. I. Kukulin, V. N, Pomerantsev, Kh. . Rasikov, V. T. Voronchev, and G. G. Ryzhikh, Nucl. Phys. A586, 15F (£995).

[52] R. G. H. Robertson et al., Phys. Rev. Lett. 47, 1367 (1981).

[53] R. A. Maifiies and 1. A. Tjon, Nucl. Phys. A127, 161 (1969).

{54] N. lagur, in Hodrons and Hadronic Matier, Ed- D. Vautherin, F. Lenz and J. W. Negele, Plevum Press, New York and
London (1990).

[55] I. Carlson and V. R. Pandharipande, Phys. Rev. D 43, 1652 (1991).

[56) D. Robson, Phys. Rev. D 35, 1029 (1947).

[57] F. Fernandez, A. Valcarce, U, Straub and A. Faessler, F. Phys. G 19 2013 (1993).
[58] Y. W. Yu, Z. Y. Zhang, P. N. Shen and .. R. Dad, Phys. Rev.C 52, 3393 {1993).

15

FIG. 1. The upper [our lines show expectation values of v3'F" for Ms=0, #=0, and the lower {our lines are for Ms=0, 8=x/2
or equivalently Mg=2x1, §=0 The expectation values for Ms==1, d=x/2 (not shown) are half way in between.

FIG. 2. The $- and D-wave deuteron wave functions for various potential models.

FIG. 3. The top, middle and bottom four curves respectively show the deuteron density for the indicated values of M4 and
#, obtained from various potential models.

FIG. 4. The deuteron density p3(z’, ¢’} obtained from the Argonne vig model. The peaks are located at £'=0 and z'=+d/2.
FIG. 5. The deuteron density p3*(z’, ') obtained from the Argonne vie model. The peaks are located at £'=0 and x'=1d/2.

FIG. 6. The surfaces having p3'{r')=0.24 fm= (A) and p3(r'}=0.24 fm~* (B}. The surfaces are symmetric aboot ' axis
and bave r' <0,74 {m, i.e., the length of the dumbbell along ' axis as well as the diameter of the outer surface of the torus is
1.48 fm. Sections C sad D are for o3 (r')=0.08 fm™¥; the maximum value of v* is 1.2 fm.

FIG, 7. The square of the calculated deutercn charge form factors.

FIG. 8. The values of deuteron To(g) obtained from Eq. (3.11) are shown by full line, whereas the dashed line gives T2o(g)
including magnetic contributions for a 15° electron scattering angle.

FIG. 8. The square of the denteron magnetic form factor calculated with (full line) and without {dashed line) convection
current term.

FIG. 10. The transition density pi-(z's) for elastic magnetic scattering by deuterons. The peaks are located at #'=0 and
z'=40.5 fm.

FIG. 11. The denteron momentum distribulion for selected values of My and #4.

FIG. 12. The calculated values of J[e,e'p)n croge section for the kinematice described in the text. Hollow and filled symbols
indicate reauits of complete calculations without and with meson-exchange currents.

FiG. 13. p:;‘l’(r.B)/RM for various nudlei.

FIG. 14. Ro{rap) and Ra(rap} for *He. The points show results of Monte Carlo calculations in configuration space, and the
curves are smooth fite. The ssymptotic Ay given by Eq. (5.5) are shown by dashed lines.

FIG. 15. Density distribution of dp clusters in *He with My = §, My=0 and M, = §. The peaks are located at zep=0 and
zdp ~ £1 fm.

FIG. 16. Density distribution of dp clusters in *He with M = }, Mu=1 and M, = —1. The peaks are located at £4,=0 and
xap ~ 1 fm
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FIG. 17. Momentum distribution of if clugters in *He in My = .:T state for parallel and tra se Lo the z-axis

FIG. 18. Ra(rsd) and Ri(rae) for *He. See Fig. 15 for natation.

FIG. 19. Density distribution of dd clusters in *He in paralie]l (#=0) and transverse {#=x/2)} directions.
FIG. 20. Momentum distribution of dd clusters in *He in paralle] (#=0) and transverse (P=x/2) directions.
FIG. 21. Ro{raq) and Ra{ras} for °Li. See Fig. 15 for notation.

FIG. 22. Density distribution of ood clusters in ®Li in paraliel {#=0) and transverse (#=x/2) disections.

FIG. 23. pﬂ"‘ {r, O}IR{‘J for varicus nuclei. The upper three curves are for Mg=0, #=0 while the lower ones are for Ms=0,
#=x/2 and equivalently Ms==1, 8=0.

FIG. 24. g} 5(r}/ Rf's for various nuclei. The p{r) of an unpolarized deuteron, normalized to have the same maximum value,
is shewn for compatison by the dotted Line.

FIG. 25. pfp(r)/Res for various nuclei.
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TABLE I. The calculated values of R4z and other ratios.

Nucleus Rag -i—»’-;#"',_ 4 N&4y
P ¥,
THe 2.0 2.1 ~2 1.5 149
‘He 4.7 5.1 ~4 3 2.99
*Li 6.3 6.3 5.5 5.46
"Li 7.2 7.8 6.5(5) 8.15 6.73
1o 18.8 22 17(3) 16(3) 30 30.1
TABLE I1. The calculated values of Rf ¢ and Nf ¢ in various nuclei.
Nucleus R Ny R3S Ny R, NA
P ¥, P Ty 1P ¥
THe 0.087 1.5 1.35 0.0016 0 0.01 0.012 0 0.4
"He 0.22 3 2.5 0.0085 0 0.01 0.060 0 0.47
"Li 0.24 4.5 4.0 0.061 0.5 0.52 0.104 4.5 4.96
Li 0.37 6.75 6.1 0.118 0.75 0.77 0.18 6.75 7.41
] 1 30 28.5 1 [3 6.05 1 54 55.5
18
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